Gleason-kahane-Żelazko theorem for spectrally bounded algebra

نویسندگان

  • S. H. Kulkarni
  • Daniel Sukumar
چکیده

We prove by elementary methods the following generalization of a theorem due to Gleason, Kahane, and Żelazko. Let A be a real algebra with unit 1 such that the spectrum of every element in A is bounded and let φ : A→ C be a linear map such that φ(1) = 1 and (φ(a))2 + (φ(b))2 = 0 for all a, b in A satisfying ab = ba and a2 + b2 is invertible. Then φ(ab) = φ(a)φ(b) for all a, b in A. Similar results are proved for real and complex algebras using Ransford’s concept of generalized spectrum. With these ideas, a sufficient condition for a linear transformation to be multiplicative is established in terms of generalized spectrum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost multiplicative linear functionals and approximate spectrum

We define a new type of spectrum, called δ-approximate spectrum, of an element a in a complex unital Banach algebra A and show that the δ-approximate spectrum σ_δ (a) of a is compact. The relation between the δ-approximate spectrum and the usual spectrum is investigated. Also an analogue of the classical Gleason-Kahane-Zelazko theorem is established: For each ε>0, there is δ>0 such that if ϕ is...

متن کامل

Two Generalizations of the Gleason-kahane-z̀elazko Theorem

In this article we obtain 2 generalizations of the well known Gleason-Kahane-Z̀elazko Theorem. We consider a unital Banach algebra A, and a continuous unital linear mapping φ of A into Mn(C) – the n × n matrices over C. The first generalization states that if φ sends invertible elements to invertible elements, then the kernel of φ is contained in a proper two sided closed ideal of finite codimen...

متن کامل

A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices

The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...

متن کامل

Spectrally Bounded Operators on Simple C∗-algebras

A linear mapping T from a subspace E of a Banach algebra into another Banach algebra is called spectrally bounded if there is a constant M ≥ 0 such that r(Tx) ≤ M r(x) for all x ∈ E, where r( · ) denotes the spectral radius. We prove that every spectrally bounded unital operator from a unital purely infinite simple C∗-algebra onto a unital semisimple Banach algebra is a Jordan epimorphism.

متن کامل

Multiplication operators on Banach modules over spectrally separable algebras

‎Let $mathcal{A}$ be a commutative Banach algebra and $mathscr{X}$ be a left Banach $mathcal{A}$-module‎. ‎We study the set‎ ‎${rm Dec}_{mathcal{A}}(mathscr{X})$ of all elements in $mathcal{A}$ which induce a decomposable multiplication operator on $mathscr{X}$‎. ‎In the case $mathscr{X}=mathcal{A}$‎, ‎${rm Dec}_{mathcal{A}}(mathcal{A})$ is the well-known Apostol algebra of $mathcal{A}$‎. ‎We s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2005  شماره 

صفحات  -

تاریخ انتشار 2005